{"id":730978,"date":"2018-08-30T08:40:56","date_gmt":"2018-08-30T08:40:56","guid":{"rendered":"https:\/\/www.questionpro.com\/blog\/guttman-olcegi-tanim-ozellikler-ve-ornekler\/"},"modified":"2018-08-30T08:40:56","modified_gmt":"2018-08-30T08:40:56","slug":"guttman-olcegi-tanim-ozellikler-ve-ornekler","status":"publish","type":"post","link":"https:\/\/www.questionpro.com\/blog\/tr\/guttman-olcegi-tanim-ozellikler-ve-ornekler\/","title":{"rendered":"Guttman \u00d6l\u00e7e\u011fi: Tan\u0131m, \u00d6zellikler ve \u00d6rnekler"},"content":{"rendered":"
\n

\u0130\u00e7erik Dizini<\/p>\n

    \n
  1. Guttman \u00d6l\u00e7e\u011fi Tan\u0131m\u0131<\/a><\/li>\n
  2. Guttman \u00d6l\u00e7e\u011fi \u00d6zellikleri<\/a><\/li>\n
  3. \u00d6rneklerle Guttman \u00d6l\u00e7e\u011fi Geli\u015ftirme Ad\u0131mlar\u0131<\/a><\/li>\n
  4. \u00d6rneklerle Guttman \u00d6l\u00e7e\u011fi Uygulamalar\u0131<\/a><\/li>\n
  5. Guttman \u00d6l\u00e7e\u011fi Avantajlar\u0131<\/a><\/li>\n<\/ol>\n<\/div>\n

    \"Guttman<\/p>\n

    <\/a>Guttman \u00d6l\u00e7e\u011fi Tan\u0131m\u0131<\/b><\/h2>\n

    Guttman \u00f6l\u00e7e\u011fi \u00fc\u00e7 tek boyutlu \u00f6l\u00e7ekten biridir, di\u011fer ikisi – <\/span>
    \n Likert \u00d6l\u00e7e\u011fi<\/span>
    \n<\/a> ve Thurstone \u00d6l\u00e7e\u011fi. K\u00fcm\u00fclatif \u00f6l\u00e7ekleme veya skalogram analizi olarak da adland\u0131r\u0131lan Guttman \u00f6l\u00e7e\u011fi, muhtemelen hiyerar\u015fik bir \u015fekilde s\u0131ralanabilecek unsurlarla olu\u015fturulur. Bu durum, a\u015fa\u011f\u0131daki a\u015f\u0131r\u0131 “tutumu” temsil etmektedir <\/span>

    \n Kat\u0131l\u0131mc\u0131lar<\/span>
    \n<\/a>yani eldeki konu hakk\u0131nda son derece olumlu veya olumsuz. <\/span> <\/p>\n

    Bu \u00f6l\u00e7ek, g\u00f6r\u00fc\u015flerin s\u00fcreklili\u011fi i\u00e7in tek boyutlu bir \u00f6l\u00e7e\u011fin gerekli oldu\u011fu durumlarda ara\u015ft\u0131rmac\u0131lar taraf\u0131ndan kullan\u0131l\u0131r. “Tek” boyutlu \u00f6l\u00e7ek, cevap se\u00e7eneklerinin yaln\u0131zca bir \u00f6l\u00e7\u00fcm parametresine sahip oldu\u011funu, yani bir dizi say\u0131n\u0131n \u00f6l\u00e7ekle ili\u015fkilendirilebilece\u011fini g\u00f6sterir. \u00d6rne\u011fin, “0-10 aras\u0131 bir \u00f6l\u00e7ekte, bu havayolu \u015firketinin hizmetinden ne kadar memnunsunuz?” – tek boyutlu cevap se\u00e7enekleri ile belirtilebilir. <\/span><\/p>\n

    Guttman \u00f6l\u00e7e\u011finde bir ifade listesi vard\u0131r. Bu listenin sonunda yer alan ifadeyi kabul eden kat\u0131l\u0131mc\u0131lar\u0131n, son ifadenin \u00fczerindeki di\u011fer t\u00fcm ifadeleri de kabul etmi\u015f olacaklar\u0131 sonucuna var\u0131labilir. Her ifadenin kendisiyle ili\u015fkili bir a\u011f\u0131rl\u0131\u011f\u0131 olacakt\u0131r. A\u011f\u0131rl\u0131\u011f\u0131n a\u015fa\u011f\u0131dakilere g\u00f6re toplanmas\u0131 <\/span>kat\u0131l\u0131mc\u0131 geri bildirimi<\/span><\/a> ara\u015ft\u0131rmac\u0131lara, kat\u0131l\u0131mc\u0131lar\u0131n kat\u0131ld\u0131klar\u0131 ifadelerin say\u0131s\u0131n\u0131 tahmin etmede yard\u0131mc\u0131 olacakt\u0131r. \u00d6rne\u011fin, 5 \u00f6l\u00e7ekli bir Guttman \u00f6l\u00e7e\u011finde, bir kat\u0131l\u0131mc\u0131n\u0131n 3 puan almas\u0131 \u00f6l\u00e7e\u011fin ilk 3 ifadesine kat\u0131ld\u0131\u011f\u0131n\u0131, farkl\u0131 bir kat\u0131l\u0131mc\u0131n\u0131n 5 puan almas\u0131 ise bu k\u00fcm\u00fclatif \u00f6l\u00e7ekteki t\u00fcm ifadelere kat\u0131ld\u0131\u011f\u0131n\u0131 g\u00f6sterir. <\/span><\/p>\n

    Bu \u00f6l\u00e7e\u011fin temel amac\u0131, \u00f6l\u00e7ekte belirtilen ifadelerin %100’\u00fcne uyan kat\u0131l\u0131mc\u0131lar\u0131 filtrelemektir. Ancak, pratikte kat\u0131l\u0131mc\u0131lar\u0131n bir dizi ifadeye tam olarak uymas\u0131 pek m\u00fcmk\u00fcn de\u011fildir ve bu nedenle, hedef kitleye en yak\u0131n ifade setini de\u011ferlendirmek i\u00e7in skalogram analizi yap\u0131l\u0131r. <\/span>izleyici<\/span><\/a> kabul ediyor. Bogardus \u00f6l\u00e7e\u011fi, Guttman \u00f6l\u00e7e\u011finin pop\u00fclatif bir \u00f6rne\u011fidir.<\/span><\/p>\n

    Daha fazla bilgi edinin: Likert \u00d6l\u00e7e\u011fi \u00d6rnekleri<\/a><\/p>\n

    <\/a>Guttman \u00d6l\u00e7e\u011fi \u00d6zellikleri<\/b><\/h3>\n